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Introduction

This thesis introduces the topic of optical frequency doubling, which is the physical process in
which a high-intensity optical field produces a nonlinear polarization in a medium, and in turn
gives rise to an electromagnetic wave with twice the frequency of the applied field. Quantum
mechanically, pairs of photons with the same frequency are effectively “combined” to form new
photons with twice the energy (and thus twice the frequency and half the wavelength) of the
initial photons.

Nonlinear polarization effects only arise when the optical field is on the order of the in-
teratomic electric fields of the medium (usually 105 to 108 V/m). Such high intensity optical
fields were not available until the invention of the laser in 1960, so the phenomenon was not
demonstrated until 1961 by Peter Franken, A. E. Hill, C. W. Peters, and G. Weinreich at the
University of Michigan, Ann Arbor [7]. The formulation of second harmonic generation was
first described by N. Bloembergen and P. S. Pershan at Harvard in 1962 [8].

In practice, the optical field is sent through a nonlinear crystal for second harmonic genera-
tion. Several crystals (BBO, LBO, KTP, BiBO, KNbO3, PPLN) are used for second harmonic
generation at different frequencies. We have obtained a barium borate (BBO) crystal to fre-
quency double 800nm laser light. In future work the crystal will be placed in a resonant cavity
that is locked to the fundamental frequency to increase the fundamental pump power sent
through the crystal. The second harmonic power generated increases quadratically with the
pump power.

Since its discovery, optical frequency doubling has found many experimental applications.
Our motivation derives from a theoretical proposal set forth by Masuda et. al (2014) to use
the doubled light in a BEC apparatus for faster adiabatic loading of the condensate into an
optical lattice [9]. Black box frequency doublers are available commercially at prices ranging
from twenty to fourty thousand dollars, but building one is much less costly.

Outline

• Theoretical review and derivation of Gaussian beam optics.
• Review of studies of the Michelson interferometer, which was built to characterize a

diode laser system and understand the relevant piezoelectric control mechanisms for
use in the resonant cavity.
• Derivation of second harmonic generation beginning from the nonlinear electron oscil-

lator model.
• For efficient second harmonic generation the index of refraction must be identical for the

fundamental and second harmonic waves. We discuss critical phase matching, which
accomplishes this by sending the fundamental beam into a birefringent doubling crystal
at a special angle of incidence called the phase matching angle. Another method called
quasi-phase matching uses precise temperature control of a periodically poled doubling
crystal.

vi



OUTLINE vii

• Discussion of the Boyd-Kleinman theory of focused Gaussian beam SHG optimization.
• Overview of the optical resonance cavity and locking scheme.



CHAPTER 1

Gaussian Beam Optics

In this chapter we derive Gaussian beam optics, which are indispensable to characterizing
any laser system (including the frequency doubling scheme). The Gaussian beam equations
are solutions to the paraxial wave equation, which assumes that the laser beam propagation is
nearly paraxial. We assume a nearly paraxial cylindrically symmetric wave propagating in the
+k̂ direction. Our derivation follows closely that given in [10].

1. The Paraxial Wave Equation

In this section we derive the paraxial wave equation. We begin with the wave equation for
an electric field in a vacuum:

(1.1) ∇2E(~r, t)− 1

c2

∂2

∂t2
E(~r, t) = 0.

We examine only the scalar wave equation instead of the full vector form. This analysis will
therefore not take into account polarization effects. Assume a solution of the form

(1.2) E(~r, t) = E (~r)e−iωt

which is a single frequency (monochromatic) electric field. We now substitute (1.2) into (1.1),
use the wavenumber k = 2π

λ
= 2π

2πc/ω
= ω

c
, and divide by e−iωt:

(1.3) ∇2E (~r) + k2E (~r) = 0.

This is called the Helmholtz equation for E (~r). We assume the beam propagates along the

z-axis. For an ideal plane wave propagating along the z-axis we would have ∂2E (~r)
∂x2

= ∂2E (~r)
∂y2

= 0.

This would produce a solution to (1.3) given by

(1.4) E (~r) = Aeikz.

Thus, for a non-plane wave propagating along the z-axis we try a solution with an eikz term
along with a correction term E0(~r):

(1.5) E (~r) = E0(~r)eikz.

Now we assume that the wave propagation is nearly paraxial. Namely, we assume that
within a distance of the order of a wavelength in the k̂ direction, changes in E0 and ∂E0/∂z are
negligible:

λ
∣∣∣∂E0

∂z

∣∣∣� ∣∣E0

∣∣(1.6)

λ
∣∣∣∂2E0

∂2z

∣∣∣� ∣∣∣∂E0

∂z

∣∣∣(1.7)

1



2. GAUSSIAN BEAM SOLUTION TO THE PARAXIAL WAVE EQUATION 2

and since k = 2π/λ, ∣∣∣∂E0

∂z

∣∣∣� k
∣∣E0

∣∣(1.8) ∣∣∣∂2E0

∂2z

∣∣∣� k
∣∣∣∂E0

∂z

∣∣∣.(1.9)

We know (1.5) must satisfy the Helmholtz equation (1.3):

(1.10)
( ∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
E0(~r)eikz + k2E0(~r)eikz = 0.

Using the product rule we have

∂2

∂z2
E0(~r)eikz =

(∂2E0

∂z2
+ 2ik

∂E0

∂z
− k2E0

)
eikz(1.11)

≈
(

2ik
∂E0

∂z
− k2E0

)
eikz(1.12)

under the approximation given by (1.9). Combining (1.12) and (1.10) gives

(1.13)
( ∂2

∂x2
+

∂2

∂y2
+ 2ik

∂

∂z

)
E0(~r) ∼= 0.

Substituting the transverse Laplacian defined as ∇2
T ≡ ∂2

∂x2
+ ∂2

∂y2
we arrive at the paraxial wave

equation for the correction term E0(~r):

(1.14) ∇2
TE0 + 2ik

∂E0

∂z
= 0.

2. Gaussian Beam Solution to the Paraxial Wave Equation

Laser beams are frequently observed to have a Gaussian beam intensity profile

(1.15) I(x, y, z) ∼ |E0(~r)|2e−2(x2+y2)/w2

where w is called the spot size, and is the lateral distance from the z axis at which the intensity
is 1/e2 of its on-axis value. We construct a solution to (1.14) which will produce this intensity
profile. Namely,

(1.16) E0(~r) = Aeik(x2+y2)/2q(z)eip(z)

where A is a constant and q(z) and p(z) are to be determined.
We now determine q(z) and p(z). To this end, we first compute the requisite derivatives:

(1.17)
∂E0

∂z
= iA

(
dp

dz
− k

2
(x2 + y2)

1

q2

dq

dz

)
eik(x2+y2)/2q(z)eip(z)

and

(1.18) ∇2
TE0 = A

(
2ik

q
− k2

q2
(x2 + y2)

)
eik(x2+y2)/2q(z)eip(z).

Substituting these expressions into (1.14) gives

(1.19) ∇2
TE0 + 2ik

∂E0

∂z
= A

(
k2

q2
(x2 + y2)

(
dq

dz
− 1

)
− 2k

(
dp

dz
− i

q

))
eik(x2+y2)/2q(z)eip(z) = 0.
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Thus, (1.16) will be a solution to (1.14) if

(1.20)
dq

dz
= 1

and

(1.21)
dp

dz
=
i

q
.

Solving (1.20) gives

(1.22) q(z) = q0 + z

where q0 = q(0). Substituting (1.22) into (1.21) gives the differential equation

(1.23)
dp

dz
=

i

q0 + z
.

If we assume p(0) = 0 we can integrate this expression explicitly:

(1.24) p(z) = i ln
q0 + z

q0

.

Now we define 1/q as

(1.25)
1

q(z)
=

1

R(z)
+

iλ

πw2(z)
.

We arrive at the imaginary term in (1.25) from the observation that as R→∞, 1/q → iλ
πw2(z)

,

and using this expression for 1/q in (1.16) produces the desired Gaussian intensity profile (1.15).
The real part 1/R can be thought of as an arbitrary function of z. However, a close analogy can
be drawn between R and the radius of curvature of a spherical wave [11]. Substituting (1.25)
and r2 = x2 + y2 into (1.16) the q-dependent term becomes

(1.26) exp

(
ikr2

2q(z)

)
= exp

[(
ikr2

2

)(
1

R(z)

)
−
(
kr2

2

)(
λ

πw2(z)

)]
.

The 1/R term in (1.26) is imaginary, and thus accounts for a phase shift. We now show this
phase shift is identical to the phase delay of a spherical wave with radius of curvature R. As
shown in Figure 1.1a, we designate φ(r) to be the phase delay (in radians) relative to the plane
defined by a fixed value of z at some radius r from the z-axis.
We now derive an expression for φ(r). Using the geometry of Figure 1.1b we have

(1.27) R = R cos θ + φ(r)
λ

2π
.

In the paraxial approximation r � R. Thus, θ � 1, so cos θ ∼= 1 − θ2/2 and θ ∼= sin θ = r/R.
Thus,

(1.28) R ∼= R− (r/R)2

2
+ φ(r)

λ

2π
.

Rearranging terms we find

(1.29) φ(r) ∼=
πr2

λR
=
kr2

2R

which is identical to the imaginary term in (1.26). This equivalence implies that for a fixed
value of z the Gaussian beam wavefront is approximately spherical with radius of curvature R.
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(a) Phase delay φ(r) in a spherical wave
at a distance r from the axis of propaga-
tion [11].

(b) Spherical wave geometry

Figure 1.1. Geometric aid to deriving the phase delay of a spherical wave.

Now we use (1.24) in (1.25) to get

eip(z) = exp

[
− ln

q0 + z

q0

]
=

q0

q0 + z

=
1

1 + z/q0

=
1

1 + z/R0 + iλz/πw2
0

(1.30)

where R0 and w0 are the values of R and w at z = 0.
If R0 and w0 are known, then (1.22) and (1.25) give R(z) and w(z) for all values of z. We

assume our laser converges to some minimum spot size. We call this minimum spot size the
beam waist w0. Since the designation z = 0 is arbitrary, we choose it to be the point on the
z-axis at which the beam converges to w0. Since the beam is neither converging nor diverging
at z = 0 the wave is approximately planar at this point. This implies R0 is infinitely large, so

(1.31) R0 =∞
and

(1.32)
1

q0

=
iλ

πw2
0

.

Thus,

1

q(z)
=

1

q0 + z
=

1
iλ
πw2

0
+ z

=
z − iλ

πw2
0

z2 + λ2

π2w4
0

=
1

R(z)
+

iλ

πw2(z)
.(1.33)
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Equating the real and imaginary parts gives

R(z) = z +
z2

0

z
(1.34)

w(z) = w0

√
1 + z2/z2

0(1.35)

where we define z0 to be

(1.36) z0 =
πw2

0

λ
.

This parameter is known as the Rayleigh range.
Equations (1.31) and (1.36) allow us to write (1.30) as

(1.37) eip(z) =
1

1 + iz/z0

.

We define

(1.38) µ(z) = tan−1(z/z0)

so that

(1.39) eip(z) =
1√

1 + z2/z2
0

e−iµ(z).

Using this equation and (1.26) in (1.15) we have

(1.40) E0(~r) =
Ae−iµ(z)√
1 + z2/z2

0

eikr
2/2R(z)e−r

2/w2(z).

Multiplying by eikz gives the complete expression for the spatially dependent component of the
electric field E (~r).

Note that (1.35) implies

(1.41) w(z0) = w0

√
2.

Thus, the Rayleigh range z0 is a measure of the length of the region where the beam waist is
within a

√
2 multiple of w0. Note that w(z0) varies as w0, and from (1.36) z0 varies as w2

0.
Since the former relation is linear and the latter quadratic we know a smaller beam waist w0

will produce a greater rate of increase with z of the spot size w(z). Thus, focusing the beam to
small w0 has the cost of large beam divergence. Note we cannot make w0 too small or else the
beam divergence will be too great for the paraxial approximation (1.8) and (1.9) to hold.

We define the angular divergence θ of the Gaussian beam to be the angle between ω(z) (the
distance from the z-axis at which the intensity drops to 1/e2 of its on-axis value) and the z axis.
When z � z0 the angular divergence is given by

(1.42) θ ≈ tan θ =
w(z)

z
≈ w0

z0

=
λ

πw0

, z � z0

Thus, the beam waist w0 must be large compared with the wavelength λ for the angular diver-
gence to be small and the paraxial approximation to apply.

With (1.40) in hand, it is straightforward to derive the intensity of the field averaged over
an optical period:

(1.43) I(r, z) =
cε0
2
|E (r, z)|2 =

(cε0/2)|A|2

1 + z2/z2
0

e−2r2/w2(z)
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Thus, the rate at which energy crosses any plane defined by a constant z value is∫ 2π

0

∫ ∞
0

I(r, z)rdrdθ =
(cε0/2)|A|2

1 + z2/z2
0

∫ 2π

0

∫ ∞
0

e−2r2/w2(z)rdrdθ

=
cε0
4
|A|2(πw2

0)(1.44)

Note that this expression is independent of z, which is consistent with the conservation of energy.
It is useful to consider the limit z � z0, as it arises frequently in laser systems. In this limit

1/(1 + z2/z2
0) = z2

0/(z
2
0 + z2) ≈ z2

0/z
2 and the beam intensity becomes

(1.45) I(r, z) = (cε0/2)|A|2 z
2
0

z2
e−2r2/w2(z), z � z0.

When z � z0 we have

(1.46)
√

1 + z2/z2
0 = z/z0

√
1 + z2

0/z
2 ≈ z/z0

so that

(1.47) w(z) = w0

√
1 + z2/z2

0 ≈
w0z

z0

=
λz

πw0

, z � z0

which is a linear function of the distance z from the beam waist. Additionally, note that when
z � z0, µ(z) = tan−1(z/z0) ≈ π/2. Thus,

(1.48) E (~r) ≈ (cε0/2)|A|2 z0

z
ei(kz−π/2)eikr

2/2R(z)e−r
2/w2(z), z � z0

We can reduce this further by noting when z � z0, (1.34) becomes

(1.49) R ≈ z, z >> z0

so that

(1.50) E (~r) ≈ −i(cε0/2)|A|2z0

[
1

z
eikzeikr

2/2z

]
e−r

2/w2(z), z � z0

The bracketed portion is identical to the field from a spherical wave with center of curvature
located at the beam waist [10]. In fact, (1.50) takes exactly the same form as a spherical wave
for points close enough to the z-axis that

(1.51) e−r
2/w2(z) ≈ 1.

It is interesting to note that the field strength (1.40) for a given value of z is determined only
by the amplitude constant A, the wavelength λ, and the beam waist w0 (the Rayleigh range z0

is determined from these quantities). Incredibly, these parameters alone fully characterize any
nearly paraxial Gaussian beam.
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(1.52a)

(1.52b)

(1.52c)

(1.52d)

(1.52e)

(1.52f)

(1.52g)

(1.52h)

E(~r) = E0(~r)eikze−iwt (electric field)

E0(~r) =
Ae−iµ(z)√
1 + z2/z2

0

eikr
2/2R(z)e−r

2/w2(z)

µ(z) = tan−1(z/z0)

I(r, z) =
cε0
2
|E (r, z)|2 =

(cε0/2)|A|2

1 + z2/z2
0

e−2r2/w2(z) (intensity)

w(z) = w0

√
1 +

z2

z2
0

(spot size)

R(z) = z +
z2

0

z
(radius of curvature)

z0 = πw2
0/λ (Rayleigh range)

Table 1. Gaussian Beam Solution to the Paraxial Wave Equation



CHAPTER 2

Michelson Interferometer

Before studying optical second harmonic generation directly we built a Michelson inter-
ferometer to characterize a diode laser system and develop an understanding of the relevant
piezoelectric control mechanisms for use in the resonant cavity. This involved piezoelectric con-
trol of the mirrors and laser frequency. In this chapter we give a theoretical treatment of the
Michelson interferometer, followed by a brief account of our confirmation of this theory in the
lab.

1. Theory

When two beams of equal frequency interfere they create a circular interference pattern of
bright and dark fringes on whatever surface they are incident upon. The Michelson interferom-
eter produces this phenomenon by using a beam splitter to divide monochromatic light into two
beams which reflect off of mirrors placed at different distances from the beam splitter before
recombining in the splitter and creating an interference pattern on a nearby photodiode.

Figure 2.1. Michelson interferometer with moveable mirror [1]

As depicted in Figure 2.1 when the difference in distance δL traveled between the two beams
is an integer number of wavelngths (left) the two interfere constructively when recombined.
When δL = (n + 1/2)λ (right) the beams interfere destructively. We can switch between
constructive and destructive interference either by changing the optical path length difference
δL or by changing the frequency of the input beam.

8



1. THEORY 9

We assume the beam splitter splits the input beam into two beams which are monochromatic
plane waves of equal amplitude traveling in a vacuum in the z-direction with phases φ1 and φ2:

E1(z, t) =
1

2

[
E0e

iφ1eiωt + c.c.
]

(2.1)

E2(z, t) =
1

2

[
E0e

iφ2eiωt + c.c.
]
.(2.2)

Since the two beams originate from the same input beam their fields are identical besides the
phase difference. When these two beams are superimposed the resulting field is

Ef (z, t) = E1(z, t) + E2(z, t)(2.3)

=
1

2
E0

[
eiφ1 + eiφ2

]
eiωt + c.c..(2.4)

The intensity of a monochromatic wave is given by (see Appendix)

(2.5) I =
1

2

√
ε0
µ
|E0(z)|2

where E0(z) is the complex amplitude of the wave. Applying this expression to the input waves
E1(z) and E2(z) gives

(2.6) I1 =
1

2

√
ε0
µ
|E0e

iφ1|2

and

(2.7) I2 =
1

2

√
ε0
µ
|E0e

iφ2|2.

Both expressions simplify to

(2.8) I1 = I2 =
1

2

√
ε0
µ
|E0|2.

Applying (2.5) to the optical field of the recombined beam (2.4) gives

If =
1

2

√
ε0
µ

∣∣∣∣E0

(
eiφ1 + eiφ2

)∣∣∣∣2(2.9)

=
1

2

√
ε0
µ

(
|E0e

iφ1|2 + |E0e
iφ2 |2 + E 2

0

[
ei(φ1−φ2) + ei(φ2−φ1)

])
(2.10)

=
1

2

√
ε0
µ

(
|E0e

iφ1|2 + |E0e
iφ2 |2 + 2E 2

0 cos(φ2 − φ1)
])

(2.11)

= 2I1(1 + cosφ)(2.12)

where φ = φ2− φ1. Now we assume the first wave has traveled a distance z and the second has
traveled a distance z + δL where δL is the path length difference between the two beams. This
implies

φ1 = −kz(2.13)

φ2 = −k(z + δL)(2.14)

so

(2.15) φ = φ2 − φ1 = kδL =
2πδL

λ
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which implies

(2.16) If = 2I1

[
1 + cos

(
2πδL

λ

)]
.

In sum, we have found the intensity If that results from the interference of two plane waves of
equal intensity I0 and wavelength λ which have traveled a difference in optical path length δL.

2. Practice

We confirmed (2.16) both by changing the wavelength λ and the optical path length differ-
ence δL. We changed δL with a piezoelectric transducer (PZT) placed on one of the mirrors of
the interferometer. The piezo varied significantly only with very high voltage input (50-100V),
which is greater than our function generator can produce. With no source of reproducible input
voltage we could only confirm the theory qualitatively by changing δL using a hand-adjustable
voltage generator and observing the corresponding intensity of the recombined beam on the
oscilloscope.

The wavelength λ was changed using a piezo placed on one of the intracavity mirrors.
Changing the intracavity resonator length changes the wavelength of light which resonates with
the cavity and is output by the laser. We used a 780nm diode laser. The difference in distance
between the beam splitter and each mirror of the interferometer was 8.3cm, which corresponds
to an optical path length difference δL = 16.6cm. The piezo changes the wavelength of the laser
as a function of voltage input, which we found to be (7.9± .1)× 10−4nm/Volt.

780.00 780.02 780.04 780.06 780.08 780.10

0.0

0.5

1.0

1.5

2.0

λ (nm)

In
te
ns
ity

(A
rb
.)

(a)

780.000 780.002 780.004 780.006 780.008 780.010

0.0

0.5

1.0

1.5

2.0

λ (nm)

In
te
ns
ity

(A
rb
.)

(b)

Figure 2.2. Predicted intensity output for δL = 16.6cm and λ near 780nm.

Above are plots of (2.16) over different ranges of λ. According to Figure 2.2b the two beams
should go from destructive interference to constructive interference over a wavelength change of
∼ .002nm.

We tested this prediction by driving the piezo with a triangle wave produced by a function
generator and measuring the intensity of the recombined beam with a photodiode linked to an
oscilloscope. Two examples of the plots produced in the oscilloscope are given in Figures 2.3a
and 2.3b. The ”cusps” where the sinusoidal pattern is broken represent where the triangle wave
reaches maximum or minimum amplitude and begins to change the wavelength in the opposite
direction. The amplitude of the triangle wave driving the piezo for Figure 2.3a is clearly greater
than that of Figure 2.3b because the former traverses 1.5 periods of constructive to destructive
interference between each cusp and the latter traverses only half a period.
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(a) (b)

Figure 2.3. Actual intensity output of recombined beam as internal laser piezo
is driven by a triangle wave.

Figure 2.3a gives the output intensity when the laser piezo is driven by a triangle wave
of frequency f = 10Hz and peak-to-peak amplitude Vp2p = 8.7V. The intensity traverses 1.5
periods (3 bright-dark transitions) in (32 ± 2)ms, so one bright-dark transition corresponds to
a wavelength change of

∆λ =∆V× 7.86× 10−4nm/Volt

=

[
1

3

(
32× 10−3s

)
× 8.7V

1/20s

]
× 7.9× 10−4nm/Volt

=0.0015nm

which is within uncertainty of our predicted value ∼ .002nm.
Figure 2.3b gives the output intensity from an input triangle wave of frequency f = 10Hz

and peak-to-peak amplitude Vp2p = 5.7V. The intensity traverses one bright-dark transition in
(25± 2)ms, which corresponds to a wavelength change of

∆λ =∆V× 7.86× 10−4nm/Volt

=

[(
25× 10−3s

)
× 5.7V

1/20s

]
× 7.9× 10−4nm/Volt

=0.0022nm

for one bright-dark transition, which also matches the predicted value quite well.



CHAPTER 3

Nonlinear Optics

Nonlinear optics is the branch of optics which describes the behavior of light in nonlinear
media, that is, media in which the polarization ~P responds nonlinearly to the optical field. As we
will see, this phenomenon gives rise to the useful property of optical second harmonic frequency
generation. Nonlinear optics arise when the intensity of the applied optical field is comparable
to the interatomic electric fields of the nonlinear medium (usually 105 to 108 V/m), so the
phenomenon was not discovered until the invention of the laser in 1960. Just as a mechanical
oscillator can be overdriven into a nonlinear response through the application of large forces, so
too can a high intensity laser produce a nonlinear polarization of the optical medium. For this
analysis we make frequent reference to the treatments presented in [10], [2], [12], and [13].

1. The Nonlinear Electron Oscillator

In this section we derive the nonlinear effects produced when an electron on a spring is
overdriven by an oscillating electric field. This derivation follows closely that given in [10]. For
an electron on an ideal spring placed in an electric field E(t) the equation of motion is

(3.1) m
d2x

dt2
= −eE(t)−mω2

0x

where x(t) is the displacement of the electron from its equilibrium position. With an ideal
spring the restoring force in (3.1) is associated with a potential energy

(3.2) U(x) =
1

2
mω2

0x
2

but with a real spring we cannot make this assumption. For a real spring the effective potential
energy (whatever form it takes) can be expanded as a Taylor series about the equilibrium
position x = 0:

(3.3) U(x) = U(0) + x

(
dU

dx

)
x=0

+
1

2!
x2

(
d2U

dx2

)
x=0

+
1

3!
x3

(
d3U

dx3

)
x=0

+ . . . .

The first term U(0) may be neglected because it is constant and thus does not produce any
force (F=-dU/dx). Additionally, at x = 0 the potential energy is a minimum, which implies

(3.4)

(
dU

dx

)
x=0

= 0.

With these observations we may write

(3.5) U(x) =
1

2!
x2

(
d2U

dx2

)
x=0

+
1

3!
x3

(
d3U

dx3

)
x=0

+ . . . .

Note if odd powers of x are present in the expansion then the potential energy (and thus the
restoring force) cannot be centrosymmetric. This means the nonlinear medium lacks inversion
symmetry.

12
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Figure 3.1. Noncentrosymmetric potential energy function [2].

Since the force is restorative, x = 0 must be a stable equilibrium. Thus,

(3.6)

(
d2U

dx2

)
x=0

> 0

which allows us to define

(3.7) mω2
0 ≡

(
d2U

dx2

)
x=0

.

Interestingly, it is the curvature of the effective potential energy which determines the oscillator
frequency ω0. For simplicity, we introduce new variables A and B defined as

A ≡ 1

3!

(
d3U

dx3

)
x=0

(3.8)

B ≡ 1

4!

(
d4U

dx4

)
x=0

(3.9)

and implicitly define C, D and so on to be the higher order Taylor series coefficients. These
definitions simplify the Taylor series to

(3.10) U(x) =
1

2
mω2

0x
2 + Ax3 +Bx4 + . . . .

Since A,B, . . . do not depend on x, we can determine the restoring force by taking the spatial
derivative of (3.10):

(3.11) F = −dU
dx

= −mω2
0x− 3Ax2 − 4Bx3 + . . .

which implies the equation of motion is

(3.12) ẍ+ w2
0x+

3A

m
x2 +

4B

m
x3 + · · · = − e

m
E(t).

In the event of an ideal spring with a perfectly elastic restoring force, A = B = · · · = 0 and we
recover the simple harmonic oscillator equation (3.1). As we will see, it is precisely the nonlinear
terms in (3.12) that produce the nonlinear optical effects which give rise to second harmonic
generation.

In reality, atoms are governed by quantum mechanics and not by the Newtonian mechanics
of restorative forces. However, to a large extent the quantum-mechanical theory of nonlinear
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optical susceptibility merely provides a method of calculating A,B, . . . from first principles,
without changing the nature of (3.10). Quantum mechanics also allows each atom to possess
many energy eigenvalues and thus more than one resonance frequency ω0. However, this analysis
gives a quite adequate description of nonlinear optics when all of the optical frequencies are well
below the lowest electronic resonance frequency of the medium. Under this assumption we can
treat nonlinear optics quite satisfactorily with this classical analysis.

2. Perturbative Solution to the Nonlinear Oscillator Equation

Based on the success of the linear oscillator model, we expect the nonlinear terms to be
quite small. For the first nonlinear term to be significant we must have

(3.13) mω2
0x ∼ 3Ax2

or

(3.14) x ∼ mω2
0

3A
.

If 3A/m � ω2
0 then the displacement x must be quite large for the first nonlinear term to

be appreciable. This is consistent with experimental observations that nonlinear matter-field
interactions do not arise until high intensity electromagnetic fields are applied.

For the following analysis we assume that the quadratic term is the only significant nonlin-
earity. We also assume a damping force of the form −mσẋ. The constant σ is known as the
conductivity of the medium. Under these assumptions the nonlinear electron oscillator equation
becomes

(3.15) ẍ+ σẋ+ w2
0x+ ax2 = − e

m
E(t)

where a = 3A/m. We assume a simple oscillating electric field given by

(3.16) E(t) =
1

2
(E0e

−iωt + c.c)

There is no known general solution to (3.15) for an applied electric field of the form (3.16).
However, if we assume a is small in the sense described above we may treat it as a perturbation
of the linear oscillator equation.

We proceed with a method analogous to that of Rayleigh-Schrödinger perturbation theory
in quantum mechanics. We replace E(t) by λE(t), where λ is the perturbation constant which
varies continuously between zero and one. At the end of the calculation we set λ equal to one.
Equation (3.15) becomes

(3.17) ẍ+ σẋ+ w2
0x+ ax2 = −λ e

m
E(t).

We now seek a solution to (3.17) in the form of a power series expansion of λ, namely

(3.18) x = λx(1) + λ2x(2) + λ3x(3) + . . . .

In order for (3.18) to be a solution to (3.17) for arbitrary λ, coefficients of each power of λ must
maintain the equality in (3.17). Equating the λ, λ2, and λ3 coefficients respectively gives

ẍ(1) + σẋ(1) + ω2
0x

(1) = − e

m
E(t)(3.19)

ẍ(2) + σẋ(2) + ω2
0x

(2) + a[x(1)]2 = 0(3.20)

ẍ(3) + σẋ(3) + ω2
0x

(2) + 2ax(1)x(2) = 0.(3.21)
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As expected, the lowest-order contribution x(1) is governed by the linear oscillator model (3.19).
The steady-state solution to (3.19) is

(3.22) x(1)(t) =
1

2

[
a(1)(ω)e−iωt + c.c.

]
,

where the amplitude a(1)(ω) is given by

(3.23) a(1)(ω) = − e

m

E0

D(ω)

and we have introduced the complex denominator

(3.24) D(ω) = w2
0 − ω2 − iωσ.

The homogeneous solution to (3.19) is given by

(3.25) x
(1)
hom(t) = [A cosω′0t+B sinω′0t]e

−σ
2
t

where

(3.26) ω′0 = (ω2
0 − σ2/4)1/2 ≈ ω0.

If the oscillator has realistic relaxation then

(3.27) t� 1/σ

which implies e−
σ
2
t ≈ 0. Thus, we can neglect the homogeneous solution because it is a short-

lived contribution to the general solution which quickly damps to zero.
Now we square the expression for x(1)(t) and substitute into (3.20). The square of x(1)(t)

contains the frequencies ±2ω and 0. To determine the nonlinear response at frequency 2ω we
solve the equation

(3.28) ẍ(2) + σẋ(2) + ω2
0x

(2) =
−a(eE0/m)2e−2iωt

D2(ω)
.

For the same reasons as above, we can ignore the homogenous solution. Based on the observation
above we seek steady-state solutions to (3.28) of the form

(3.29) x
(2)
1 (t) =

1

2
(a(2)(2ω)e−2iωt + c.c.)

and

(3.30) x
(2)
2 (t) = a(2)(0).

Substitution of (3.29) and (3.30) into (3.28) gives

(3.31) a(2)(2ω) =
−a(e/m)2E2

0

2D(2ω)D2(ω)
.

and

(3.32) a(2)(0) =
−a(e/m)2E0E

∗
0

2D(0)D(ω)D(−ω)

where we have made use of the definition (3.24) of the denominator function D(ω). Combining
the linear and nonlinear results gives

x(t) ≈ x(1)(t) + x
(2)
1 (t) + x

(2)
2 (t)(3.33)

=
1

2
(a(1)(ω)e−iωt + c.c.) +

1

2
(a(2)(2ω)e−2iωt + c.c.) + a(2)(0).(3.34)
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In sum, we have characterized the linear and first-order nonlinear response of a damped harmonic
oscillator. We have seen that the motion of the electron has a component oscillating at twice
the frequency of the applied optical field.

3. Nonlinear Polarization

In this section we show that the ±2ω component of the oscillating electron motion produces
a nonlinear component of the medium’s resulting polarization, which in turn produces electro-
magnetic radiation at frequency 2ω. The following treatment of nonlinear dielectrics follows
closely the analyses presented in [2], [14], and [3].

We assume the polarization density ~P and the applied electric field ~E point in the same
direction, so we can proceed with scalar quantities. Nonlinear dielectrics are characterized by
a nonlinear relation between P and E. Even in nonlinear dielectrics, external optical fields
are typically much smaller than the interatomic fields of the medium and the standard linear
relation

(3.35) P (1) = ε0χ
(1)E

is a good approximation. Even when focused laser light is used, the nonlinear effects are quite
weak. Thus, for small E the relationship is approximately linear, and becomes only slightly
nonlinear as E increases. This allows us to expand the function relating P to E as a Taylor
series about E = 0:

(3.36) P = a1E +
1

2
a2E

2 +
1

6
a3E

3 + . . . .

The coefficients a1, a2 and a3 are the first, second, and third derivatives of P with respect to
E at E = 0. For (3.36) to be consistant with (3.35) we observe a1 = ε0χ

(1). The second term
represents a quadratic or second-order nonlinearity, the third a third-order noninearity, and so
on. Renaming terms so that χ(2) = a2/2, χ(3) = a3/6, etc. gives

(3.37) P = ε0χ
(1)E + χ(2)E2 + χ(3)E3 + . . . .

The coefficients χ(j) with j > 1 are called the nonlinear susceptibilities of the medium.
The polarization density P is defined as the electric dipole moment per unit volume. Approx-

imating the atomic structure of the medium as a collection of electric dipoles with displacement
~d(t) = ex(t) then P can also be expressed as

(3.38) P = Nex(t)

where N is the number of molecules per unit volume and x is the electron distance from equi-
librium.

In solving (3.15), our expression (3.34) for x(t) contains two nonlinear components: x
(2)
1 (t),

which oscillates at 2ω, and x
(2)
2 (t), which is a DC offset term of zero frequency. The former is

proportional to E2
0 and the latter is proportional to E0E

∗
0 . Therefore, both are proportional

to the (real) amplitude squared of E0, which we call E0. Since E0 is arbitrary, then E0 is also
arbitrary, and equating (3.37) and (3.38) implies that coefficients corresponding to each power
of E0 must also be equal.

By the logic above, since x
(2)
1 (t) is nonzero and proportional to E 2

0 , then the nonlinear
susceptibility χ(2) must be nonzero. Thus, the first nonlinear term of the polarization density
expansion, given by

(3.39) P (2) = χ(2)E2



4. WAVE PROPAGATION IN NONLINEAR MEDIA 17

is nonzero. In reality, χ(1) and χ(2) are tensors which depend on the frequency and direction
of the optical field. This complicates the analysis significantly, and is outside the scope of this
work. We will take these susceptibilities to be empirical parameters. For a more complete
treatment see [2], which derives the first and second order susceptibility corrections at each
frequency by equating each component of the electron motion approximation (3.34) in (3.38)
with the corresponding component of the other polarization density expression (3.37).

In sum, we have found that the presence of E 2
0 proportional terms in our approximation of

x(t) implies the existence of an E2 dependent term in the expansion of P . Substituting our
expression (3.16) for E(t) into (3.39) gives

P (2) =χ(2)E2

=χ(2)

[
1

2
(E0e

−iωt + E∗0e
iωt)

]2

=χ(2) 1

4

[
E2

0e
−i2ωt + (E∗0)2ei2ωt + 2E0E

∗
0

]
.(3.40)

Thus, the E2 dependent term in P contains components oscillating at frequencies ±2ω and
0. In [2] these components are shown to arise directly from the nonlinear components of x(t)
oscillating at frequencies ±2ω and 0. Also presented in [2] is the generalization to an applied
electric field with two frequency components ω1 and ω2, which produce sum ω1+ω2 and difference
ω1 − ω2 components of x(t) and P (2). This treatment will continue to focus solely on the case
of second harmonic generation.

4. Wave Propagation in Nonlinear Media

We have just seen that when an optical field oscillating at frequency ω is applied to a
nonlinear medium it produces a nonlinear polarization component oscillating at frequency 2ω.
In this section we use this polarization in Maxwell’s equations to derive expressions for the
propagation of the electromagnetic wave through the medium. In the following section these
expressions will be used to infer second harmonic generation. This treatment follows closely
that given in [12].

Maxwell’s equations are given by

∇× ~H = ~J +
∂ ~D

∂t
(3.41)

∇× ~E = −µ∂
~H

∂t
(3.42)

and

~D = ε0 ~E + ~P(3.43)

~J = σ ~E(3.44)

where ~D and ~H are the electric and magnetic displacement vectors, ~E and ~B are the electric and
magnetic field vectors, ~P is the polarization, ~J is the current density, and σ is the conductivity.
In writing (3.41) and (3.42) we have assumed the nonlinear medium to be nonferromagnetic so

that the magnetic dipole moment per unit volume ~M is approximately zero.
We define ~PNL to be the sum of nonlinear components of ~P so that

(3.45) ~P = ε0χ
(1) ~E + ~PNL
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and (3.41) becomes

(3.46) ∇× ~H = σ ~E + ε
∂ ~E

∂t
+
∂

∂t
~PNL

where the definition ε ≡ ε0(1 + χ(1)) has been used.
For this analysis we assume that all electric fields involved are infinite transverse plane

waves propagating in the z-direction. Since the propagation direction is perpendicular to ~E,
then clearly ∇ · ~E = 0. For Gaussian beams ∇ · ~E is non-zero, but can be shown to be small in
comparison to other terms in the expression.

Taking the curl of both sides of (3.42), using (3.46) and the vector identity

(3.47) ∇×∇× ~E = ∇∇ · ~E −∇2 ~E

and taking ∇ · ~E = 0 gives

(3.48) ∇2 ~E = µσ
∂ ~E

∂t
+ µε

∂2 ~E

∂t2
+ µ

∂2

∂t2
~PNL.

We assume ~E and ~P are parallel so we can rewrite (3.48) in scalar notation as

(3.49) ∇2E = µσ
∂E

∂t
+ µε

∂2E

∂t2
+ µ

∂2

∂t2
PNL.

We have assumed E to be an infinite plane wave propagating in the z-direction:

(3.50) E(ω)(z, t) =
1

2

[
E1(z)ei(ωt−k1z) + c.c.

]
.

As the electromagnetic wave propagates through the nonlinear medium we will prove in the
next section that it acquires a second harmonic component given by

(3.51) E(2ω)(z, t) =
1

2

[
E2(z)ei(2ωt−k2z) + c.c.

]
which oscillates with frequency 2ω. In fact, it also acquires components at frequencies 3ω, 4ω,
and so on, but we are only concerned with the second harmonic for this analysis. Adding both
components gives the total electric field

(3.52) E(z, t) = E(ω)(z, t) + E(2ω)(z, t).

Note that each component of this electric field is consistent with (3.16) under proper definition
of E0.

By (3.39), we square the electric field (3.52) to find first nonlinear term P (2) of the nonlinear
polarization PNL. Squaring (3.52) we find that P (2) contains components at frequencies 0, ω,
2ω, 3ω and 4ω. We concern ourselves only with the ω and 2ω components, which are given by

(3.53) P
(2ω)
NL =

1

2
d
[
E2

1(z)ei(2ωt−2k1z) + c.c.
]

and

(3.54) P
(ω)
NL =

1

4
d
[
E2(z)E∗1(z)ei[ωt−(k2−k1)z] + c.c.

]
where we have used d = χ(2)/2, the standard notation for the first nonlinear coefficient. It
should be emphasized that, in general, d depends not only on the medium, but also on the
direction of wave propagation through the medium and the frequencies involved.
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We split (3.49) into separate equations by frequency dependence. Using our expression (3.54)

for P
(ω)
NL the ω term becomes

(3.55) ∇2E(ω) = µσ1
∂E(ω)

∂t
+ µε1

∂2E(ω)

∂t2
+ µd

∂2

∂t2

[
E2(z)E∗1(z)

4
ei[ωt−(k2−k1)z] + c.c.

]
.

We now obtain an expression for ∇2E(ω):

∇2E(ω) =
1

2

∂2

∂z2

[
E1(z)ei(ωt−k1z) + c.c.

]
≈ −1

2

[
k2

1E1(z) + 2ik1
dE1(z)

dz

]
ei(ωt−k1z) + c.c.(3.56)

where we assumed

(3.57)

∣∣∣∣k1
dE1(z)

dz

∣∣∣∣� ∣∣∣∣d2E1(z)

dz2

∣∣∣∣.
This is a reasonable approximation because the nonlinear medium is uniform, so we do not
expect drastic fluctuations in the electric field amplitude as the optical field propagates through
the medium. This is called the slowly-varying-amplitude approximation, and is discussed further
in Section 2.2 of [2]. This approximation implies the second spatial derivative of E1(z) will be
much smaller than the first, as stated in (3.57).

The first and second time derivatives of E(ω) are given by

(3.58)
∂E(ω)

∂t
= iω

E1(z)

2
ei(ωt−k1z) + c.c.

and

(3.59)
∂2E(ω)

∂t2
= −ω2E1(z)

2
ei(ωt−k1z) + c.c..

Evaluating the third term in (3.55) gives

(3.60) µd
∂2

∂t2

[
E2(z)E∗1(z)

4
ei(2ωt−2k1z) + c.c.

]
= −

[
ω2µd

4
E2(z)E∗1(z)ei[ωt−(k2−k1)z] + c.c.

]
.

Substituting (3.56), (3.58), (3.59) and (3.60) into (3.55), recognizing that k2
1 = ω2µε1 and

multiplying all terms by

(3.61)
i

k1

exp(−iωt+ ik1z)

gives

(3.62)
dE1

dz
= −σ1

2

√
µ

ε1
E1 −

iω

4

√
µ

ε1
dE2E

∗
1e
−i(k2−2k1)z

and a nearly identical analysis gives

(3.63)
dE2

dz
= −σ2

2

√
µ

ε2
E2 −

i2ω

2

√
µ

ε2
dE2

1e
−i(2k1−k2)z.

These are the equations describing wave propagation in a nonlinear medium. We note that
they are coupled to eachother by the nonlinear coefficient d. See [12] for a generalization to an
electric field consisting of two arbitrary frequencies ω1 and ω2 and a sum frequency ω1 + ω2.
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5. Optical Second-Harmonic Generation

In this section we use the derived wave equation (3.63) for the second harmonic component
of E to determine E(2ω)(t). For simplicity, we ignore absorption so σ1,2 = 0, which is a good
approximation in most optical media. Equation (3.63) becomes

(3.64)
dE2(z)

dz
= −iω

√
µ

ε2
dE2

1(z)ei(∆k)z

where

(3.65) ∆k = k2 − 2k1 = k(2ω) − 2k(ω).

To further simplify this analysis, we assume that the depletion of the input wave at ω due
to interaction with the medium is negligible. Under these conditions, which apply in most
experimental situations, we can take E1(z) as constant and neglect its z-dependence. Since the
input wave has no 2ω component, then E2(0) = 0. Under these assumptions we integrate (3.64)
over a crystal of length l to obtain

(3.66) E2(l) = −iω
√
µ

ε2
dE2

1

ei∆kl − 1

i∆k
.

The output intensity is then proportional to

(3.67) E2(l)E∗2(l) =
µ

ε0

ω2d2

n2
2ω

|E1|4l2
sin2(∆kl/2)

(∆kl/2)2

where we used ε2/ε0 = n2
2ω with n2ω the index of refraction of the medium for an applied optical

field at 2ω. If we confine the input beam to a cross sectional area A then the power per unit
area (intensity) is given by (see Appendix)

I2ω ≡
P2ω

A
=

1

2

√
ε2
µ
|E2|2(3.68)

Iω ≡
Pω
A

=
1

2

√
ε1
µ
|E1|2(3.69)

Combining these expressions with (3.67) we can write

(3.70) ηSHG ≡
P2ω

Pω
= 2

(
µ

ε0

)3/2
ω2d2l2

n2
ωn2ω

sin2(∆kl/2)

(∆kl/2)2

Pω
A

for the conversion efficiency from ω to 2ω. Interestingly, the conversion efficiency is propor-
tional to the intensity Pω/A of the fundamental beam. An analagous procedure with a focused
Gaussian beam input reveals a conversion efficiency identical to (3.70) with A replaced by πw2

0

under the assumption z0 >> l, where z0 = πw2
0n/λ is the Rayleigh range of the Gaussian beam.

According to (3.70) the conversion efficiency will surpass 100% for sufficiently large input
power, which violates conservation of energy. This error is a direct result of our assumption that
E1(z) is constant with time. Thus, (3.70) only applies when ηSHG is small. For a more accurate
treatment we would have to consider the depletion of the pump radiation as it is converted to the
second harmonic. This would require analyzing in tandem both derived differential equations
for the wave propagation (3.62) and (3.63) which couple E1(z) and E2(z) through the nonlinear
coefficient d. For our setup, ηSHG is small enough so that (3.70) holds. For a treatment of second
harmonic generation with input depletion see [10], [2], [14], or [12].



CHAPTER 4

SHG Optimization

In this chapter we outline the techniques that could be used to optimize the SHG light
generated. First we maximize (3.70) to optimize single-pass efficiency. We then introduce the
resonant cavity and associated locking scheme which allow the pump beam to pass through the
crystal many times and greatly increase the SHG light generated.

1. Critical Phase Matching

The conversion efficiency (3.70), will be maximized when ∆k = 0 or, using (3.65),

(4.1) k(2ω) = 2k(ω),

which is a direct result of the mathematical relation

(4.2) lim
x→0

sin(x)

x
= 1.

As the input field propagates through the medium it continuously generates light at the second
harmonic. The second harmonic field propagates with phase velocity c/n2ω, whereas (3.54)
dictates the nonlinear polarization source has phase velocity c/nω. This discrepancy produces a
phase difference in the fields given by ∆k 6= 0, which we have shown reduces the output power
by a factor of

(4.3)
sin2(∆kl/2)

(∆kl/2)2
.

We can express ∆k as a function of the indices of refraction of the medium at ω and 2ω:

(4.4) ∆k = k(2ω) − 2k(ω) =
2ω

c
[n2ω − nω]

where we used the relation k = ωn/c. Thus, we must have

(4.5) n2ω = nω

for maximum conversion efficiency.
In normally dispersive materials the refractive index increases with ω, which makes (4.5)

difficult to achieve. One method uses the birefringence of uniaxial crystals used for second
harmonic generation. This method is called critical phase matching.

A birefringent crystal is one in which the refractive index depends upon the direction of
polarization of the propagating light wave. Birefringent crystals are classified based on their
atomic geometry as either biaxial or uniaxial [2]. Isotropic crystals have a uniform refractive
index that is independent of polarization direction, and thus are not defined to be birefringent.
For uniaxial crystals there is one principle axis, called the extraordinary axis, along which the
refractive index is distinct from the other two principle axes (in biaxial crystals all three principle
axes have distinct refractive indices). The extraordinary axis in uniaxial crystals is also known
as the optic axis, and will be referred to as such for the remainder of this thesis. All polarizations
perpendicular to the optic axis experience the same refractive index no. Polarizations parallel

21
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Figure 4.1. A light beam with two orthogonal field components traversing a
negative uniaxial crystal. The ordinary ray experiences a refractive index no(ω)
and the extraordinary ray experiences a refractive index ne(ω, θ).

to the optic axis experience a refractive index ne. It should be emphasized that the optic axis
is a direction and not merely a single line.

Two types of waves can propagate in a birefringent uniaxial crystal, namely, waves plane-
polarized perpendicular to the plane formed by the optic axis and the direction of propagation
(ordinary waves) which experience a refractive index no(ω), and waves plane-polarized parallel
to this plane (extraordinary waves) which experience a refractive index ne(ω, θ) a function of ω

and the angle θ between the wavevector ~k and the optic axis. As depicted in Figure 4.1, the
o-ray and e-ray experience different indices of refraction. The e-ray is refracted from the normal
line (disobeying Snell’s law). The angle between the e-ray and o-ray is known as the walk-off
angle, and will be discussed in the following section.

As given in [15] these indices are related by

(4.6)
1

n2
e(ω, θ)

=
cos2 θ

n2
o(ω)

+
sin2 θ

n2
e(ω)

where ne(ω) = ne(ω, θ = π/2). Since ~E (whose direction defines the polarization direction of the

wave) and ~k are perpendicular, then when ~k is parallel to the optic axis (θ = 0) the polarization
will be perpendicular to the optic axis. Since all polarizations perpendicular to the optic axis
experience a refractive index no(ω) then we expect (and (4.6) confirms) that ne(ω, 0) = no(ω).

One way to achieve the phase matching condition (4.5) is by sending in the fundamental
wave as an extraordinary wave propagating at an angle θp to the optic axis such that

(4.7) ne(ω, θp) = no(2ω).

This type of second harmonic generation is called e-e-o because on the quantum scale pairs of
identical extraordinary photons combine to form one ordinary photon with twice the energy
(and frequency) of the first two. The second harmonic wave is generated as an ordinary wave
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propagating in the direction θp because this is the only direction and polarization for which
there is phase matching and thus appreciable second harmonic generation.

Using (4.7) in (4.6) gives

(4.8)
1

n2
o(2ω)

=
1

n2
e(ω, θp)

=
cos2 θp
n2
o(ω)

+
sin2 θp
n2
e(ω)

.

Solving for sin2 θp we have

(4.9) sin2 θp =
no(ω)−2 − no(2ω)−2

no(ω)−2 − ne(ω)−2

Assuming that the crystal is normally despersive, no(2ω) > no(ω) and therefore no(ω)−2 −
no(2ω)−2 > 0. Thus, in order for sin2 θp > 0 we must have no(ω)−2 − ne(ω)−2 > 0 or ne(ω) >
no(ω). Furthermore, for sin2 θp > 0 we require

(4.10) no(ω)−2 − ne(ω)−2 > no(ω)−2 − no(2ω)−2

or

(4.11) ne(ω) > no(2ω).

Crystals with the property ne(ω) > no(ω) are called positive uniaxial.
Our experimental setup uses a barium borate BaB2O4 (BBO) crystal, which is a birefringent

uniaxial crystal for which no(ω) > ne(ω). Such a crystal is called negative uniaxial. As we have
just shown, sending in the fundamental wave as an extraordinary wave at an angle θp which
satisfies (4.7) will not work for the case of a negative uniaxial crystal. Instead, the fundamental
wave is sent in as an ordinary wave propagating at an angle θp such that

(4.12) no(ω) = ne(2ω, θp),

satisfying the phase matching condition for efficient second harmonic generation in the θp direc-
tion. This type of second harmonic generation is called o-o-e because pairs of ordinary photons
combine to form extraordinary photons with double the frequency. Since the second harmonic
propagates parallel to the fundamental, both the fundamental and extraordinary waves will
propagate at θp to the optic axis. A similar analysis as before gives

(4.13) sin2 θp =
no(ω)−2 − no(2ω)−2

ne(2ω)−2 − no(2ω)−2

which requires

(4.14) ne(2ω) < no(ω)

along with no(ω) > ne(ω) for the critical phase matching angle θp to exist.
Our fundamental beam has wavelength λ = 800nm or ω = 2πc/λ = 2.36× 1015Hz. Accord-

ing to [16] the ordinary and extraordinary indices of refraction of BBO are closely fit by the
expressions

n2
o(λ) = 2.7359 +

0.01878

λ2 − 0.01822
− 0.01354λ2

n2
e(λ) = 2.3753 +

0.01224

λ2 − 0.01667
− 0.01516λ2
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for λ given in µm. Using λ1 = 800nm and λ2 = 400nm in the above expressions gives

no(ω) = 1.6606

no(2ω) = 1.6930

ne(2ω) = 1.5679

and using these numbers in (4.13) gives

(4.15) θp = 29.18◦

for the critical phase matching angle.
The critical phase matching angle θp is not to be confused with Brewster’s angle θB, although

both are used for SHG optimization. Brewster’s angle is one way to eliminate any reflection at
the first face of the crystal, which would cause unwanted reduction of the transmitted power
and interference of the pump beam with itself. Another way is to anti-reflection (AR) coat the
crystal at the fundamental wavelength. Our BBO crystal is AR coated for 800nm and 400nm
to be sure that no fundamental or second harmonic light reflects off the surface. As such, we do
not need to send in the fundamental at Brewster’s angle. However, the topic is an interesting
one which can deepen our understanding of the geometry of uniaxial crystals, so I will discuss
it briefly for the remainder of this section.

If we view the atomic structure along a principal axis of the crystal as a collection of electric
dipoles, then Brewster’s angle is the angle of incidence at which the reflected ray aligns parallel
to the dipole moment ~p of the interatomic dipoles. Since dipoles cannot produce electromagnetic
radiation parallel to ~p, the amplitude of the reflected ray goes to zero at Brewster’s angle. We
also require that θB be the angle of incidence at which the transmitted field is maximized. This
means the angle between the wavevector of the transmitted field and the dipole moment of the
interatomic dipoles must be 90◦.

The dotted line in Figure 4.2 represents the axis of the interatomic atomic dipole moments.
Note that only components of the optical wave which are plane-polarized parallel to the plane
of incidence will be affected by changes in θi. Therefore, only the reflected ray of the parallel
component will be minimized at Brewster’s angle θB. Brewster’s angle is also referred to as
the “polarizing angle” because the reflected ray will be polarized perpendicular to the plane
of incidence. Brewster’s angle is achieved when θ = 0 or, using the geometry of Figure 4.2,
θr + θt = 90◦. At Brewster’s angle we have θB = θi = θr, which implies θB + θt = 90◦.

Snell’s law dictates

(4.16) ni sin θB = nt sin θt.

Using θB = 90◦ − θt it follows that

(4.17) ni sin θB = nt cos θB.

So Brewster’s angle is given by

(4.18) tan θB =
ni
nt
.

In practice, the fundamental is sent in as an ordinary wave, which means it is plane-polarized
perpendicular to the plane formed by the optic axis and the propagation direction (which form
an angle θp). Since Brewster’s angle lies on the plane formed by the propagation direction and
the fundamental beam’s polarization direction then the critical phase matching angle θp and
Brewster’s angle θB lie on perpendicular planes, as shown in Figure 4.3.
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Figure 4.2. Interatomic dipole moments and Brewster’s angle [3].

Figure 4.3. Type I o-o-e critical phase matching in a negative uniaxial crystal
cut at the phase matching angle θp and with faces cut at Brewster’s angle θB [4].

2. Walk-Off Angle

This treatment gives frequent reference to [17] and [18]. If the electric field of the extraordi-

nary wave is not parallel to the optic axis (θp 6= 0) then its Poynting vector ~S is not parallel to

its wavevector ~k. The angle between ~S and ~k is called the walk-off angle and is denoted ρ. This
angle is equivalent to the angle between the Poynting vectors of the ordinary and extraordinary
rays (see Figure 4.1).

To develop a qualitative understanding of this effect we consider an electric field ~E incident
on a birefringent negative uniaxial crystal at some non-zero angle relative to the optic axis. By
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definition of negative uniaxial no(ω) > ne(ω). The component of ~E which is parallel to the
optic axis will experience a refractive index ne(ω) and will propagate with velocity v‖ = c/ne.
The component perpendicular to the optic axis will propagate with velocity v⊥ = c/no. Since
no(ω) > ne(ω) then v⊥ < v‖. Based on this reasoning, we predict the Huygens wavelets for the
e-wave will be ellipsoids of revolution about the optic axis, as depicted in Figure 4.4 [3].

Figure 4.4. Ellipsoidal wavelets of e-wave in a negative uniaxial crystal [3].

The envelope of infinitessimal ellipsoidal wavelets will create a plane wave propagating in
the same direction as the incident wave. Evidently, the ellipsoidal wavelets will also produce
a sideways displacement of the plane wave as it propagates through the crystal. While the

wavevector ~k follows the same path as before, the direction of energy propagation (the direction

of ~S) now has a sideways displacement. This phenomenon only occurs for the extraordinary
wave, as the ordinary wave is by definition polarized perpendicular to the optic axis, and thus
experiences only one refractive index no(ω).

Now we derive an expression for the walk-off angle ρ. Since ~k ∝ ~D × ~B and ~S ∝ ~E × ~B

then ~ke ⊥ ~De and ~Se ⊥ ~Ee, which implies that ρ is also the angle between ~E and ~D. Note that
~De, ~Ee, ~Se and ~ke all lie in a plane perpendicular to ~Be. We assume that the wave is propagating
at the critical angle θp from the optic axis. From the geometry of Figure 4.6 we have

(4.19) ~De · ~Ee = | ~De|| ~Ee| cos ρ.

We can relate ~De and ~Ee through their projections onto the principal axes:

(4.20) De
z = n2

eε0E
e
z

and

(4.21) De
xy = n2

oε0E
e
xy

where we have used n2 = ε/ε0, and assumed the optic axis is in the z-direction. Since the

components of ~E in the x and y directions will both experience a refractive index no(ω) we
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Figure 4.5. Orientations of the ~E, ~S, ~D, and ~k vectors for ordinary and extra-
ordinary wavelets [3].

Figure 4.6. Walk-off angle.

have made the problem two-dimensional by projecting ~E onto the xy-plane (we will refer to this
plane later as the ordinary plane.
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The expressions (4.20) and (4.21) are valid only in the limit of a linear polarization given

by ~P = ε0χ
(1) ~E. We return to a linear approximation of ~P because it simplifies the analysis

significantly with minimal loss of accuracy.
Writing ~D as a sum of projections onto the principal axes:

(4.22) ~De · ~Ee = Ee
xyD

e
xy + Ee

zD
e
z.

Using the geometry of Figure 4.6 we have

De
xy = D cos θp

De
z = D sin θp.

Using these expressions, (4.20), (4.21), and (4.22) in (4.19) gives

cos ρ =
~De · ~Ee
| ~De|| ~Ee|

(4.23)

=
De
xyE

e
xy +De

zE
e
z[

(De
xy)

2 + (De
z)

2
]1/2[

(Ee
xy)

2 + (Ee
z)

2
]1/2(4.24)

=

D2
e

[
cos2 θp
n2
o

+ sin2 θp
n2
e

]
D2
e

[
cos2 θp
n4
o

+ sin2 θp
n4
e

]1/2
(4.25)

which implies

(4.26) cos2 ρ =

[
cos2 θp
n2
o

+ sin2 θp
n2
e

]2

[
cos2 θp
n4
o

+ sin2 θp
n4
e

] .
Using the identity

(4.27) tan2 ρ =
1

cos2 ρ
− 1

(4.26) simplifies to

(4.28) tan ρ =
1

2

[
cos2 θp
n2
o

+
sin2 θp
n2
e

]−1(
1

n2
e

− 1

n2
o

)
sin 2θp.

Employing (4.6) and (4.12) we find that the walk-off angle for the second-harmonic in negative
uniaxial crystals is given by

(4.29) ρ = arctan

(
1

2
n2
o(ω) sin 2θp

[
n−2
e (2ω)− n−2

o (2ω)
])
.

Using the values of θp, no(ω), no(2ω) and ne(2ω) given previously and in a table at the end of
this thesis, for second harmonic generation of 800nm light in a BBO crystal we find

(4.30) ρ = 3.89◦.

This result will be used in the following section to optimize second harmonic generation.
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3. Focused Gaussian Beam SHG Optimization

The theory of second harmonic generation with focused Gaussian beams has been developed
in detail by Boyd and Kleinman [19]. They derive the optimal focal properties of the fundamen-
tal beam given the crystal length, walk-off angle, and refractive indices of the medium. They
find the optimal beam properties for given values of the so-called walk-off parameter B which
is given by

(4.31) B =
1

2
ρ
√
lk(ω)

where k(ω) is the wavenumber corresponding to the fundamental wave. For second harmonic
generation with a birefringent negative uniaxial crystal we will have k(ω) = ωno(ω)/c. The
optimal focal properties as a function of B become asymptotic for B > 6, so it is desirable to
meet this condition. We use a BBO crystal of length l = 9mm, which gives B ∼= 18.

Boyd and Kleinman find when B > 6 second harmonic generation is maximized when

(4.32)
l

2z0

= 1.39

where z0 = πw2
0/λ is the Rayleigh range of the focused Gaussian beam. Solving for w0 we find

the optimum beam waist is given by

(4.33) w0 =

√
λl

2.78π
.

In our case λ = 800nm and l = 9mm so the optimal beam waist is

(4.34) w0 = 2.87× 10−5m.

The angular divergence of a Gaussian beam is approximated by (1.42) as

(4.35) θ =
λ

πw0

.

If we assume the beam begins perfectly collimated with diameter D and then is focused by an
optical element of focal length F such that w0 lies in the center of the crystal then we can also
approximate θ by

(4.36) θ =
D/2

F
.

Combining these expressions we find the optimal optical focal length F to be

(4.37) F =
w0πD

2λ
.

We use a Ti:Sapphire laser with diameter D = 2mm. Using λ = 800nm and w0 = 2.87× 10−5m
we find

(4.38) F = 11.3cm

for optimal second harmonic generation.
With the optimal beam characteristics in hand we can now calculate a predicted conversion

efficiency with (3.70). Since BBO is a negative uniaxial crystal the pump beam will be an
ordinary ray and the second harmonic will be an extraordinary ray. Thus, we use n0(ω) and
ne(2ω) in (3.70). Further, the permeability of optical materials such as BBO is close enough
to that of free space that we may substitute µ0 for µ. BBO has a nonlinear coefficient of
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approximately d = 1.95×10−23 for extraordinary rays. Our crystal length is 9mm. For an input
power of 100mW (3.70) gives

(4.39) ηSHG = 0.00016

which is a conversion efficiency of 0.016% and corresponds to an expected SHG output power
of 16µW for single pass.

4. Resonant Enhancement Cavity

To further increase the second-harmonic light generated the nonlinear crystal is placed in
a cavity of two or more mirrors which facilitate many passes of the pump beam through the
crystal. If the pump beam is resonant with the cavity and properly mode matched to it the
resulting circulating power is far greater than the incident power.

Most resonant cavities have a bowtie configuration, as shown in Figure 4.7. All mirrors are
highly reflective at the pump beam frequency, except for M1 which is slightly transmissive to
allow the fundamental wave to enter the cavity. All mirrors are also anti-reflective at the second
harmonic frequency.

Figure 4.7. Bowtie cavity for resonant enhancement of the input fundamental
wave [5].

The circulating fundamental beam must constructively interfere with the continuous beam
of fundamental light transmitted through M1. Thus, the complex beam parameter given by

(4.40) q(z) =

(
1

R(z)
− i λ

πω2(z)

)−1

must be reproduced after one round trip through the cavity. This condition can be achieved by
proper choice of cavity geometry and mirror radii of curvature. Softwares such as Winlase are
available to calculate q(z) at all points in an optical system for a given set of initial parameters
[5].
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5. Cavity Stabilization

The cavity must be stabilized so that it is always resonant with the fundamental ordinary ray.
Mechanical vibrations and temperature changes cause both the cavity length and the laser phase
to drift from resonance. One widely used locking scheme was proposed by Hänsch and Couillaud
(HC) [6]. This technique is unique in that it does not require active frequency modulation of the
laser to provide active feedback to the cavity. Methods such as the Pound-Drever-Hall scheme
which use active frequency modulation are more stable but much more expensive.

Figure 4.8. Hänsch-Couillaud cavity locking scheme [5].

First harmonic light is incident on the resonant cavity with power Pω. The λ/2 waveplate
is used to align the polarization to a small angle θ (usually ∼ 5◦) with respect to the ordinary
plane (the xy-plane in Figure 4.6) of the birefringent crystal. The incident beam’s electric field
can be decomposed into components parallel and perpendicular to the ordinary plane of the
crystal:

Ei
‖ = Ei cos θ(4.41)

Ei
⊥ = Ei sin θ(4.42)

The parallel component propagates as an ordinary wave. The cavity is optimized to be
resonant with the ordinary wave, so the parallel component experiences a low-loss cavity. Thus,
the reflected ray at M1 will have a parallel component which includes the initial reflection at
M1 as well as an infinite sum of electromagnetic waves built up in the cavity and transmitted
back through M1. Using the standard approach [15] the parallel component of the reflected ray
can be calculated as

Er
‖ = Ei

‖

[√
R1 −

T1√
R1

Reiδ

1−Reiδ

]
(4.43)

= Ei
‖

[√
R1 −

T1R√
R1

cos δ −R + i sin δ

(1−R)2 + 4R sin2(δ/2)

]
.(4.44)
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where δ is the phase accumulated by the wave as it propagates through the cavity, R1 and
T1 are the reflectivity and transmittivity of M1 and R < 1 gives the amplitude ratio between
successive round trips, which determines the cavity finesse F = π

√
R/(1 − R). The ratio R

accounts for any attenuation by the crystal and any other losses in the cavity.
The perpendicular component is extraordinary, and so is not resonant with the cavity. Thus,

the perpendicular component of the reflected ray is to first approximation

(4.45) Er
⊥ = Ei

⊥

√
R1.

At exact resonance (δ = 2nπ) both reflected components are real and in phase. Off resonance
the parallel component acquires a nonzero imaginary term and the recombined beam becomes
elliptically polarized. The magnitude of the ellipticity of the reflected ray is therefore a measure
of the detuning from resonance. Moreover, the handedness depends on the sign of the detuning.

The lower right portion of the experimental setup depicted in Figure 4.8 is for analyzing
the polarization of the reflected wave. The λ/4 waveplate is used to align the reflected wave at
45◦ to the polarization axis of the polarizing beam splitter output a. The intensities of the two
polarizations are measured using the two photodiodes PD1 and PD2, whose outputs are fed to
a differential amplifier. The signal from the differential amplifier is given by the function [6]

(4.46) Ia − Ib = 2I i cos θ sin θ
T1R sin δ

4R(1−R)2 sin2(δ/2)

where I i = 1/2cε|Ei|2 is the intensity of the input beam and θ is the angle between the incident
polarization and the ordinary plane. Increasing θ results in a better signal to noise ratio through
cos θ sin θ, but at the expense of losing some circulating pump power. This function is plotted
in Figure 4.9. Note that the slope is negative when far from resonance, and positive when very
close to resonance. This opens the possibility for automatic electronic relocking to resonance.
Interestingly, this error signal may either be fed to an internal laser piezo to lock its frequency
to the cavity (Figure 4.10), or it may be fed to a piezo placed on one of the cavity mirrors to
lock the cavity to be resonant with the laser frequency (Figure 4.8).

0 π 2 π 3 π 4 π 5 π
δ (rad)-1

0

1
Error Signal (Arb.)

Figure 4.9. Plot of error signal (4.46) as function of detuning from resonance
in Hänsch-Couillaud locking scheme.



5. CAVITY STABILIZATION 33

Figure 4.10. Hänsch-Couillaud locking scheme used to lock the laser frequency
to be resonant with a cavity [6].

λ1 = 800nm Fundamental wavelength

λ2 = 400nm Second harmonic wavelength

D = 2mm Ti:Sapphire laser beam diameter

no(ω) = 1.6606 Ordinary refractive index at fundamental frequency

no(2ω) = 1.6930 Ordinary refractive index at second harmonic frequency

ne(2ω) = 1.5679 Extraordinary refractive index at second harmonic frequency

F = 11.3cm Optimal focal length of focusing element

w0 = 2.87× 10−5m Optimal beam waist for SHG

θp = 29.18◦ Optimal critical phase-matching angle

Table 1. Relevant values for optimal second harmonic generation with given
input beam characteristics.
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Material BBO Crystal

Dimensions (3x3± 0.1)mm

Thickness 9mm

Surface Quality 10-5, scratch-dig

Flatness Lambda/6 at 633 nm

Parallelism < 5 arcminutes

Other faces Fine grind

Coating AR/AR at 800nm and 400nm

Phase-matching angle 29.2◦

Table 2. Crystal Specifications.



Appendix

Intensity of Monochomatic Plane Waves

Here we derive an expression for the intensity of monochromatic plane waves:

(4.49) I =
1

2

√
ε0
µ0

|E0(z)|2.

It is straightforward to derive the work needed to assemble a static charge distribution
against the Coulomb force between charges [20]:

(4.50) We =
ε0
2

∫
all space

E2dτ

where dτ is an infinitessimal volume element and ~E is the resulting electric field.
Likewise, the work required to get currents going against the back emf is

(4.51) Wm =
1

2µ0

∫
all space

B2dτ

where ~B is the resulting magnetic field. Since electromagnetic fields consist exclusively of moving
and stationary charges, this implies that the total energy stored in electromagnetic fields per
unit volume is

(4.52) u =
1

2

(
ε0E

2 +
1

µ0

B2

)
.

We are interested in a monochromatic plane wave traveling in the ẑ direction. The electric and
magnetic fields for such a wave are given by

~E(z, t) = E0(z) cos(kz − ωt+ δ)x̂(4.53)

~B(z, t) =
1

c
E0(z) cos(kz − ωt+ δ)ŷ(4.54)

which implies

(4.55) B2 =
1

c2
E2 = µ0ε0E

2.

Using (4.55) in (4.52) gives

(4.56) u =
1

2

(
ε0E

2 +
1

µ0

B2

)
=

1

2

(
ε0E

2 + ε0E
2

)
= ε0E

2 = ε0|E0|2 cos2(kz − ωt+ δ).

Interestingly, the contributions to the energy stored per unit volume u from the electric and
magnetic fields are equal.

35
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The energy flux density (energy per unit area, per unit time) transported by the fields is
given by the Poynting vector

(4.57) ~S =
1

µ0

( ~E × ~B).

For a monochromatic plane wave traveling in the z-direction,

(4.58) ~S = cε0|E0|2 cos2(kz − ωt+ δ)ẑ = cuẑ.

The relation ~S = cuẑ can also be derived by considering that in a time ∆t a length c∆t of
the electromagnetic wave passes through an area A carrying with it an energy u ∗ (Volume) =
u(Ac∆t). The energy per unit time, per unit area, transported by the wave is thus uc.

The intensity of the wave is defined as the (time) average power per unit area transported
by an electromagnetic wave:

(4.59) I ≡< S >=
1

T
cε0|E0|2

∫ T

0

cos2(kz − ωt+ δ)dt

where T denotes one period of oscillation. Evaluating (4.59) gives

(4.60) I =
1

2
cε0|E0(z)|2

or

(4.61) I =
1

2

√
ε0
µ0

|E0(z)|2.
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